  ### Home > GB8I > Chapter 11 Unit 12 > Lesson INT1: 11.2.2 > Problem11-64

11-64.

Two employees of Richard’s Planters can build $40$ planters in three days. At the same rate, how many employees would be needed to build $60$ planters in one day?

To find the rate, divide the number of planters by the time it takes to build the planters.

$\text{Rate}=\frac{\text{Number of Planters}}{\text{Time}}$

$\text{Rate}=\frac{40}{3} \; \text{planters/day}$

$\frac{40}{3} \; \text{planters/day} \div 2 \; \text{employees}= 6\frac{2}{3} \; \text{planters/day/employee}$

$60 \; \text{planters} = x \left(6\frac{2}{3} \; \text{planters/day/employee}\right)$

Since there were two original employees, you must divide the rate you found by $2$ in order to find the number of planters that $1$ employee can make in $1$ day.

Let $x =$ the number of employees.
Create an equation such that:
$\text{Planters} = \left(\text{Number of Employees}\right)\left(\text{Rate}\right)$

Solve for $x$.

$9 \; \text{employees}$