### Home > APCALC > Chapter 1 > Lesson 1.3.3 > Problem 1-130

1-130.

Let *f*(*x*) = *x*^{2} and *g*(*x*)* *=

*f*(3)*f*(−3)*g*(9)*g*(*f*(3))*g*(*f*(6))*g*(*f*(*x*))

*f*(3) = 9

Since *f*(*x*) and *g*(*x*) are inverse functions for *x* ≥ 0, *g*(9) = *f*(3) =______________

Recall that *f*(*x*) and *g*(*x*) are inverse functions for *x* ≥ 0, and the definition of an inverse function: *f*(*g*(*x*)) = *x*.

Because *f*(*x*) is even, *f*(−3) = *f*(3) = part a = _____

Plug in your answer from part (a).

Refer to the hint in part (e).