CPM Homework Banner

Home > CALC > Chapter 1 > Lesson 1.4.1 > Problem 1-144

1-144.

Let be a function whose finite differences grow by each time. What kind of function can be? Give two examples.

Finite differences can be used to analyze the slope of a graph at various x-values. In Lesson 1.3.1, you found consistent patterns in the way polynomial functions change. Which polynomial function would have finite differences that grow by each time?

f(x) is quadratic, for example, f(x) = 2x2.