  ### Home > CALC > Chapter 2 > Lesson 2.2.2 > Problem2-71

2-71.

If $f ( x ) = \frac { x - 3 } { x + 5 }$, find:

1. $\lim\limits_ { x \rightarrow \infty } f ( x )$

What does the graph look like to the right?

1. $\lim\limits _ { x \rightarrow - \infty } f ( x )$

What does the graph look like to the left?

1. $\lim\limits_ { x \rightarrow - 5 } f ( x )$

Since there is a vertical asymptote at $x = − 5$, the limit does not exist. But we can still determine if $f(x)$ approaches $+∞$, $−∞$ or both. We are to determine if there is agreement among the limits as $x → − 5$ from each side.

Test $\lim\limits_{x\rightarrow -5^{+}}f(x)=\lim\limits_{x\rightarrow -5^{+}}\frac{x-3}{x+5}=$
Test a point close to $x = −5$ but a little bit larger: $\lim\limits_{x\rightarrow -4.9^{+}}\frac{x-3}{x+5}=\frac{(-)}{(+)}=(-)$
Therefore, $x → −5^+$, $f(x) → −∞$

Now test $\lim\limits_{x\rightarrow -5^{-}}f(x)$
You will find $f(x)\rightarrow +\infty$.

Since$\lim\limits_{x\rightarrow -5^{+}}f(x)\neq \lim\limits_{x\rightarrow -5^{-}}f(x)$$\lim\limits_{x\rightarrow -5}f(x)$ does not exist.

1. $f(x − 5)$

Evaluate and simplify.

1. $f(2m + 3)$

Refer to hint (d).

1. $f(x + h)$

Refer to hint (d).

1. For parts (a) and (b), explain the graphical significance of $\lim\limits_ { x \rightarrow \infty } f ( x )$ and $\lim\limits_ { x \rightarrow - \infty } f ( x )$.

Refer to hints (a) and (b).