### Home > A2C > Chapter 5 > Lesson 5.1.2 > Problem 5-28

Given the parabola

*f*(*x*) =*x*^{2}− 2*x*− 3, complete parts (a) through (c) below. Homework Help ✎Find the vertex by averaging the

*x*-intercepts.Find the vertex by completing the square.

Find the vertex of

*f*(*x*) =*x*^{2}+ 5*x*+ 2 using your method of choice.What are the domain and range for

*f*(*x*) =*x*^{2}+ 5*x*+ 2?

Find the *x*-intercepts by factoring and using the Zero Product Property. Average the two numbers you get. That *x*-value represents the line of symmetry and the *x*-coordinate of the vertex.

Substitute the *x*-value you got into the equation to find the *y*-coordinate of the vertex.

What do you need to add to *x*^{2} − 2*x* to make it a perfect square? Remember to add it to both sides of the equation and subtract it from the equation so you keep the equation balanced.

When you rewrite the perfect square in factored form, your equation will be in vertex form: *y* = *a*(*x* − *h*)^{2} + *k*, where the vertex is (*h*, *k*).

(−2.5, −4.25)

Domain: All real numbers

Range: *y* ≥ −4.25