  ### Home > MC2 > Chapter 10 > Lesson 10.1.5 > Problem10-64

10-64.

Simplify each expression.

1. $\frac { 9 } { 15 } \div \frac { 4 } { 3 }$

When you divide by a fraction, you are multiplying by its reciprocal.

$\frac{9}{20}$

1. $- \frac { 19 } { 20 } + \frac { 4 } { 5 }$

Find a common denominator.

$-\frac{3}{20}$

1. $- \frac { 8 } { 9 } \div ( - \frac { 2 } { 5 } )$

See part (a).

1. $3 \frac { 1 } { 2 } \div 1 \frac { 1 } { 7 }$

Convert these mixed numbers into fractions greater than one.

$\frac{49}{16}$

1. $- \frac { 3 } { 4 } - ( - \frac { 11 } { 16 } )$

This is the same as $-\frac{3}{4}+\frac{11}{16}$

$-\frac{1}{16}$

1. $\frac { 2 } { 9 } \cdot \frac { 14 } { 15 } \cdot ( - \frac { 9 } { 10 } )$

This is the same as $\frac{2}{9}(-\frac{9}{10})\cdot\frac{14}{15}$

1. $- 10 \frac { 4 } { 5 } + ( - \frac { 3 } { 8 } )$

You may add whole numbers and fractions separately.

$(-10)+\left(-\frac{4}{5}+-\frac{3}{8}\right)$

$-11\frac{7}{40}$

1. $\frac { 12 } { 5 } \div ( - \frac { 1 } { 10 } )$

See part (a).