  ### Home > MC2 > Chapter 8 > Lesson 8.2.3 > Problem8-59

8-59.

Simplify each expression.

1. $3 \frac { 1 } { 4 } + \frac { 2 } { 5 }$

Notice that the whole number and the fractions can be added separately.

$3 + \left( \frac{1}{4} + \frac{2}{5} \right)$

$3 \frac{13}{20}$

1. $2 \frac { 3 } { 8 } - 1 \frac { 5 } { 7 }$

You may want to convert the mixed numbers into fractions greater than one before simplifying.

$\frac{19}{8} - \frac{12}{7}$

$\frac{37}{56}$

1. $4.25 - 7.06$

Remember to line up the decimal points when adding or subtracting numbers with decimals.

$−2.81$

1. $18 \div \frac { 3 } { 4 }$

When you divide a fraction, remember you are multiplying its reciprocal.

$\frac{18}{1} \left( \frac{4}{3} \right)$

$24$

1. $- \frac { 4 } { 7 } \cdot ( - \frac { 2 } { 3 } )$

Multiply.

1. $- 5 \frac { 1 } { 8 } \cdot 1 \frac { 2 } { 3 }$

See (d).

1. $10 \div \frac { 1 } { 2 }$

Converting the mixed numbers into fractions greater than one may make this expression easier to simplify.

$-\frac{205}{24}$

1. $- \frac { 3 } { 11 } + \frac { 1 } { 2 } - \frac { 3 } { 4 }$

Find a common denominator.