  ### Home > CC3MN > Chapter 8 Unit 8 > Lesson CC3: 8.2.3 > Problem8-96

8-96.

Simplify each expression.

1. $- \frac { 9 } { 5 } \cdot \frac { 8 } { 15 }$

Multiply the numerators together and the denominators together.

$-\frac{9(8)}{5(15)} = -\frac{72}{75}$

$-\frac{24}{25}$

1. $\frac { 1 } { 5 } + ( - \frac { 2 } { 15 } ) - ( - \frac { 4 } { 9 } )$

Find a common denominator.

$\frac{9}{45}+\left(-\frac{6}{45}\right)-\left(-\frac{20}{45}\right)$

1. $- \frac { 4 } { 8 } \cdot \frac { 3 } { 7 } \cdot ( - \frac { 2 } { 5 } )$

Multiply, see (a) for help.

1. $\frac { 3 } { 5 } \cdot ( - \frac { 2 } { 7 } ) + ( - \frac { 5 } { 7 } ) ( \frac { 3 } { 10 } )$

Multiply the terms, then find the common denominator.

$-\frac{27}{70}$

1. $- 8 \frac { 1 } { 9 } + 3 \frac { 5 } { 6 }$

Make fractions greater than one, then find the least common denominator

1. $2 \frac { 1 } { 2 } \cdot 4 \frac { 1 } { 5 }$

Convert the mixed numbers into fractions greater than one before multiplying.

$10\frac{1}{2}$